195 research outputs found

    Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes

    Get PDF
    addresses: Institute of Biomedical and Clinical Sciences, Peninsula Medical School, University of Exeter, Exeter, United Kingdom. [email protected]: PMCID: PMC2773013types: Journal Article; Research Support, Non-U.S. Gov'tCopyright: © 2009 Harries et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The HNF1A, HNF1B and HNF4A genes are part of an autoregulatory network in mammalian pancreas, liver, kidney and gut. The layout of this network appears to be similar in rodents and humans, but inactivation of HNF1A, HNF1B or HNF4A genes in animal models cause divergent phenotypes to those seen in man. We hypothesised that some differences may arise from variation in the expression profile of alternatively processed isoforms between species

    Metabolic Profiling in Maturity-Onset Diabetes of the Young (MODY) and Young Onset Type 2 Diabetes Fails to Detect Robust Urinary Biomarkers

    Get PDF
    It is important to identify patients with Maturity-onset diabetes of the young (MODY) as a molecular diagnosis determines both treatment and prognosis. Genetic testing is currently expensive and many patients are therefore not assessed and are misclassified as having either type 1 or type 2 diabetes. Biomarkers could facilitate the prioritisation of patients for genetic testing. We hypothesised that patients with different underlying genetic aetiologies for their diabetes could have distinct metabolic profiles which may uncover novel biomarkers. The aim of this study was to perform metabolic profiling in urine from patients with MODY due to mutations in the genes encoding glucokinase (GCK) or hepatocyte nuclear factor 1 alpha (HNF1A), type 2 diabetes (T2D) and normoglycaemic control subjects. Urinary metabolic profiling by Nuclear Magnetic Resonance (NMR) and ultra performance liquid chromatography hyphenated to Q-TOF mass spectrometry (UPLC-MS) was performed in a Discovery set of subjects with HNF1A-MODY (n = 14), GCK-MODY (n = 17), T2D (n = 14) and normoglycaemic controls (n = 34). Data were used to build a valid partial least squares discriminate analysis (PLS-DA) model where HNF1A-MODY subjects could be separated from the other diabetes subtypes. No single metabolite contributed significantly to the separation of the patient groups. However, betaine, valine, glycine and glucose were elevated in the urine of HNF1A-MODY subjects compared to the other subgroups. Direct measurements of urinary amino acids and betaine in an extended dataset did not support differences between patients groups. Elevated urinary glucose in HNF1A-MODY is consistent with the previously reported low renal threshold for glucose in this genetic subtype. In conclusion, we report the first metabolic profiling study in monogenic diabetes and show that, despite the distinct biochemical pathways affected, there are unlikely to be robust urinary biomarkers which distinguish monogenic subtypes from T2D. Our results have implications for studies investigating metabolic profiles in complex traits including T2D.publishedVersio

    Electrophysiological properties of human beta-cell lines EndoC-βH1 and -βH2 conform with human beta-cells

    Get PDF
    © The Author(s) 2018Limited access to human islets has prompted the development of human beta cell models. The human beta cell lines EndoC-βH1 and EndoC-βH2 are increasingly used by the research community. However, little is known of their electrophysiological and secretory properties. Here, we monitored parameters that constitute the glucose-triggering pathway of insulin release. Both cell lines respond to glucose (6 and 20 mM) with 2- to 3-fold stimulation of insulin secretion which correlated with an elevation of [Ca2+]i, membrane depolarisation and increased action potential firing. Similar to human primary beta cells, KATP channel activity is low at 1 mM glucose and is further reduced upon increasing glucose concentration; an effect that was mimicked by the KATP channel blocker tolbutamide. The upstroke of the action potentials reflects the activation of Ca2+ channels with some small contribution of TTX-sensitive Na+ channels. The repolarisation involves activation of voltage-gated Kv2.2 channels and large-conductance Ca2+-activated K+ channels. Exocytosis presented a similar kinetics to human primary beta cells. The ultrastructure of these cells shows insulin vesicles composed of an electron-dense core surrounded by a thin clear halo. We conclude that the EndoC-βH1 and -βH2 cells share many features of primary human β-cells and thus represent a useful experimental model.Peer reviewedFinal Published versio

    Assessment of High-Sensitivity C-Reactive Protein Levels as Diagnostic Discriminator of Maturity-Onset Diabetes of the Young Due to HNF1A Mutations

    Get PDF
    OBJECTIVE: Despite the clinical importance of an accurate diagnosis in individuals with monogenic forms of diabetes, restricted access to genetic testing leaves many patients with undiagnosed diabetes. Recently, common variation near the HNF1 homeobox A (HNF1A) gene was shown to influence C-reactive protein levels in healthy adults. We hypothesized that serum levels of high-sensitivity C-reactive protein (hs-CRP) could represent a clinically useful biomarker for the identification of HNF1A mutations causing maturity-onset diabetes of the young (MODY). RESEARCH DESIGN AND METHODS: Serum hs-CRP was measured in subjects with HNF1A-MODY (n = 31), autoimmune diabetes (n = 316), type 2 diabetes (n = 240), and glucokinase (GCK) MODY (n = 24) and in nondiabetic individuals (n = 198). The discriminative accuracy of hs-CRP was evaluated through receiver operating characteristic (ROC) curve analysis, and performance was compared with standard diagnostic criteria. Our primary analyses excluded approximately 11% of subjects in whom the single available hs-CRP measurement was >10 mg/l. RESULTS: Geometric mean (SD range) hs-CRP levels were significantly lower (

    Low Frequency Variants in the Exons Only Encoding Isoform A of HNF1A Do Not Contribute to Susceptibility to Type 2 Diabetes

    Get PDF
    Background: There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8-10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1-7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8-10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D. Methodology and principal findings: We performed targeted capillary resequencing of HNF1A exons 8-10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (≤ 45 years) and/or family history of T2D (≥ 1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9-24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rd61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected. Conclusions and significance: We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion

    The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver

    Get PDF
    Genome-wide association studies have identified a number of signals for both Type 2 Diabetes and related quantitative traits. For the majority of loci, the transition from association signal to mutational mechanism has been difficult to establish. Glucokinase (GCK) regulates glucose storage and disposal in the liver where its activity is regulated by glucokinase regulatory protein (GKRP; gene name GCKR). Fructose-6 and fructose-1 phosphate (F6P and F1P) enhance or reduce GKRP-mediated inhibition, respectively. A common GCKR variant (P446L) is reproducibly associated with triglyceride and fasting plasma glucose levels in the general population. The aim of this study was to determine the mutational mechanism responsible for this genetic association. Recombinant human GCK and both human wild-type (WT) and P446L-GKRP proteins were generated. GCK kinetic activity was observed spectrophotometrically using an NADP+-coupled assay. WT and P446L-GKRP-mediated inhibition of GCK activity and subsequent regulation by phosphate esters were determined. Assays matched for GKRP activity demonstrated no difference in dose-dependent inhibition of GCK activity or F1P-mediated regulation. However, the response to physiologically relevant F6P levels was significantly attenuated with P446L-GKRP (n = 18; P ≤ 0.03). Experiments using equimolar concentrations of both regulatory proteins confirmed these findings (n = 9; P < 0.001). In conclusion, P446L-GKRP has reduced regulation by physiological concentrations of F6P, resulting indirectly in increased GCK activity. Altered GCK regulation in liver is predicted to enhance glycolytic flux, promoting hepatic glucose metabolism and elevating concentrations of malonyl-CoA, a substrate for de novo lipogenesis, providing a mutational mechanism for the reported association of this variant with raised triglycerides and lower glucose levels

    Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes

    Get PDF
    Background: The HNF1A, HNF1B and HNF4A genes are part of an autoregulatory network in mammalian pancreas, liver, kidney and gut. The layout of this network appears to be similar in rodents and humans, but inactivation of HNF1A, HNF1B or HNF4A genes in animal models cause divergent phenotypes to those seen in man. We hypothesised that some differences may arise from variation in the expression profile of alternatively processed isoforms between species. Methodology/Principal Findings: We measured the expression of the major isoforms of the HNF1A, HNF1B and HNF4A genes in human and rodent pancreas, islet, liver and kidney by isoform-specific quantitative real-time PCR and compared their expression by the comparative Ct (??Ct) method. We found major changes in the expression profiles of the HNF genes between humans and rodents. The principal difference lies in the expression of the HNF1A gene, which exists as three isoforms in man, but as a single isoform only in rodents. More subtle changes were to the balance of HNF1B and HNF4A isoforms between species; the repressor isoform HNF1B(C) comprised only 6% in human islets compared with 24–26% in rodents (p = 0.006) whereas HNF4A9 comprised 22% of HNF4A expression in human pancreas but only 11% in rodents (p = 0.001). Conclusions/Significance: The differences we note in the isoform-specific expression of the human and rodent HNF1A, HNF1B and HNF4A genes may impact on the absolute activity of these genes, and therefore on the activity of the pancreatic transcription factor network as a whole. We conclude that alterations to expression of HNF isoforms may underlie some of the phenotypic variation caused by mutations in these genes

    Screening for Familial APP Mutations in Sporadic Cerebral Amyloid Angiopathy

    Get PDF
    Background Advances in genetic technology have revealed that variation in the same gene can cause both rare familial and common sporadic forms of the same disease. Cerebral amyloid angiopathy (CAA), a common cause of symptomatic intracerebral hemorrhage (ICH) in the elderly, can also occur in families in an autosomal dominant pattern. The majority of affected families harbor mutations in the Beta amyloid Peptide (Aβ) coding region of the gene for amyloid precursor protein (APP) or have duplications of chromosomal segments containing APP. Methodology/Principal Findings A total of 58 subjects with a diagnosis of probable or definite CAA according to validated criteria were included in the present study. We sequenced the Aβ coding region of APP in 58 individuals and performed multiplex ligation-dependent probe amplification to determine APP gene dosage in 60. No patient harbored a known or novel APP mutation or gene duplication. The frequency of mutations investigated in the present study is estimated to range from 0% to 8% in individuals with probable CAA in the general population, based on the ascertained sample size. Conclusions/Significance We found no evidence that variants at loci associated with familial CAA play a role in sporadic CAA. Based on our findings, these rare highly-penetrant mutations are unlikely to be seen in sporadic CAA patients. Therefore, our results do not support systematic genetic screening of CAA patients who lack a strong family history of hemorrhage or dementia.National Institute of Neurological Disorders and Stroke (U.S.) (grant K23NS042695)American Heart AssociationAmerican Stroke Association (Bugher Foundation for Stroke Prevention Research
    corecore